Many of us have seen and heard a Dyno power run. The power runs are part of tuning but a lot has to happen to get to the power runs. Large numbers of vehicles are presented for Dyno tuning with faults. Many of these faults may not even be noticeable during normal driving. By design the dyno places high loads often at high speeds on the vehicle. This and the data logging capabilities reveal unknown faults that will prevent tuning from being performed and need to be rectified. The issues may not necessarily be engine related either. We are going to run over some of the common issues we see during our dyno precheck or are discovered during the dyno tune. We are going to focus on 3 things, Fuel system, Ignition system and Engine.

Let’s start by explaining the differences between the parts.
OEM, Original equipment manufacturer part is a part made by the manufacture or made for them to their specification but an external company. A genuine part is a part supplied by the vehicle manufacturer in their packaging. Aftermarket parts are parts produced by any other company. Often they are reverse engineered to be a very close to the original specification. Many options are available which can vary wildly in price and quality. 
 
 
Toyota genuine Ignition CoilCopy Ignition Coil
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A number of vehicle parts can be purchased directly from the OEM. The will be supplied in plain packaging and are exactly the same specification as the genuine part. Often these parts are better priced than a genuine part.
Genuine parts are available directly from the manufacturer and in some cases as a parallel import.
 
Specialized aftermarket suppliers are able to produce more durable parts than OEM, others just produce parts designed for direct replacement. 
When vehicle modifications are made often the best parts to use are the upgraded specialist’s parts. A company like this will reverse engineer the part and work out any weakness that may be present.  Manufacturers will design taking into account cost, noise, durability and performance. Aftermarket design may be aimed directly at performance and not be as concerned with noise or vibration.  A good example of this would be an aftermarket clutch. It will be able to handle more power than an OEM. As a side effect is it may vibrate or be noisier than OEM. Many other parts like ignition coils, Suspension arms, coil overs, brake pads and rotors all fit this category.
 
Carbon multi plate clutch
 
Items that are really cheap would have be designed for price without other aspects like durability considered.
In the aftermarket you have many options to choose from. If you are not familiar with the products you could get a low quality part just with clever advertising, instead of a well-engineered product worthy of the dollars spent.
 
Now when I talk EFI, I am talking about full engine management. Let’s first touch on a little history.
Before fuel injection we had carbie and points. Firstly the points or Kettering system was replaced with electronic ignition.
This gave us a better spark to ignite the mixture but still had mechanical and vacuum timing advance. 
 
Next was throttle body or single point fuel injection which replaced the carbie with a fuel injector squirting fuel into a standard wet manifold. 
On wet and dry manifolds, a wet manifold is one that contains a mix of fuel and air while a dry manifold only contains air. Carbie and throttle body type injectors are considered to be wet while port and direct injection is dry.
 
I know mechanical fuel injection also exists, for the purpose of this discussion lets ignore it.
 
Now that we had a computer a few sensors for the throttle body injection it only was logical to add a little more computer power and have full engine management which controlled fuel and spark. Considering the added benefits of complete engine management this is the type of conversation we will discuss.
 
 
Originally I was going to write this article on reading spark plugs. I will touch on spark plug reading, but in reality it can be time consuming on modern engines to remove spark plugs. Often the spark plugs will only be inspected in the event of an issue or during maintenance. With the use of wide band O2 sensors or pyrometers and knock sensors, reading the spark plugs for tuning is possibly not necessary for many applications.
To read spark plugs accurately you will need to replace them every time a reading is to be taken.
 
Spark plug reading with get coverage along with the differnet types and their constraction.
 
 
Spark
 

 
 A boost controller does exactly that, controls your boost level. How, by controlling the amount of manifold pressure getting to the turbo wastegate.
If you wish to increase your boost pressure (typically 7psi), the boost controller must modify the pressure
signal to the wastegate actuator.
 
There are two types of boost controllers; mechanical and electronic. 
Mechanical (gated) boost controllers  are easy to fit, simple in operation and require little maintenance.
 
Electronic boost controllers are a far more sophisticated, offering a host of boost settings mapped against different triggers. Electronic boost controllers require 
special fittment and programming. They do give you the ultimate control over the boost curve with  features designed for one thing, that one thing we all want, performance.
 
This programmable control means that you can increase the performance and response from your engine without raising the boost pressure. Electronic Boost controllers
 also allow the user to control 3 different aspects of the boost curve; maximium boost pressure (set point), spool up rate of the turbocharger (gate pressure) 
and reaction time of the controller (sensitivity).
 
 

A narrowband O2 (Oxygen) sensor only reads either rich or lean of Stoichiometric. Stoich is the ration to completely combust the fuel. So a narrowband will only read rich or lean. It does not tell you how far away you are from Stoich.

A wideband O2 is designed to read a board range of air fuel ratios. Some widebands will read from 10:1 up to 20:1. Knowing how far we are away from Stoich we are able to calibrate an engine under all conditions. Especially the areas of full power which are critical to performance and longevity.

Narrowband     Wideband Haltech

Top feed fuel injectors are by far the most common, engines like the 4G63 use top feed injectors. Some of our favourite performance engines like early SR20, 3SGTE, 1JZGTE, RB25DET and EJ20 all come standard with side feed injectors.

So what is the difference?

Differance

Side feed injectors:

For side feed injectors the fuel enters through slots machined into the sides of the injector. The fuel rail is combined into the inlet manifold or cylinder head.

Top feed injectors:

As the name suggest fuel feeds into the injector from the top

Stock cars are using plastic for just about everything. Not us. Plastic has it place, luckily we have ways to replace that plastic with strong and durable parts. Just look at the gear linkages as an example. They look trick also.  Just ask us PH 31235373

AutoWorks... the key to your vehicle's performance